

Home page: https://xrbench.ai Github: https://github.com/XRBench

XRBench Image: Sevence of the seven **Benchmark Suite for the Metaverse**

https://xrbench.ai

Hyoukjun kwon^{1,2} Krishnakumar Nair,² Jamin Seo³, Jason Yik⁴, Debabrata Mohapatra², Dongyuan Zhan², Jinook Song², Peter Capak², Peizhao Zhang², Peter Vajda², Colby Banbury⁴, Mark Mazumder,⁴ Liangzhen Lai², Ashish Sirasao², Tushar Krishna³, Harshit Khaitan², Vikas Chandra², Vijay Janapa Reddi⁴

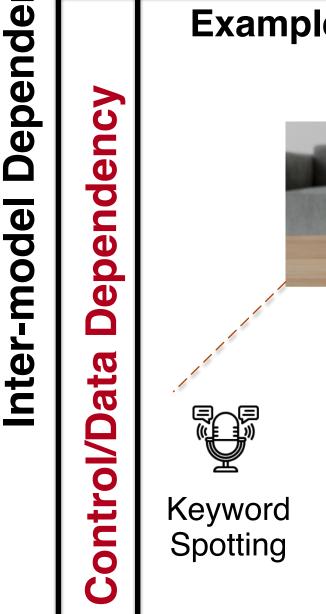
ML Workload Taxonomy

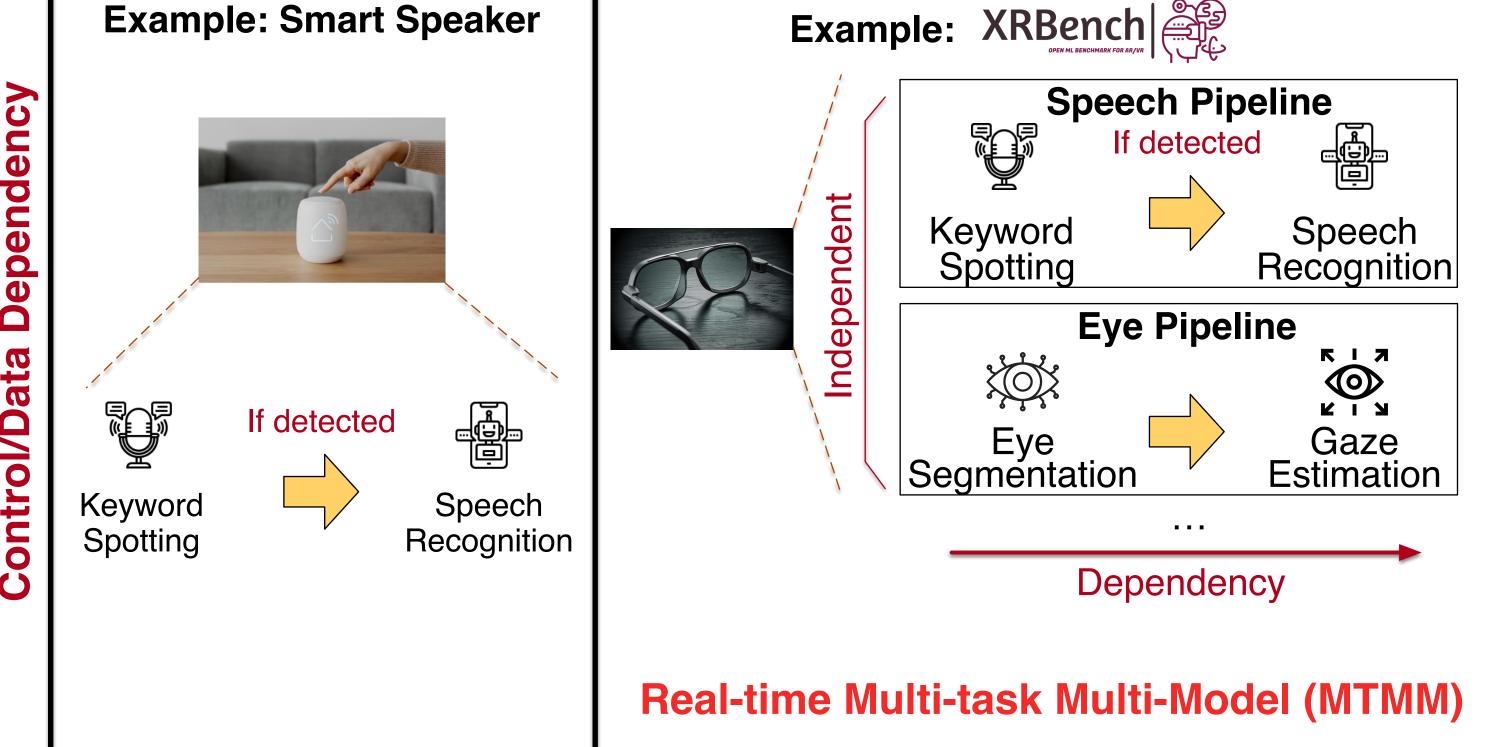
Characteristics of Real-time MTMM ML Workloads

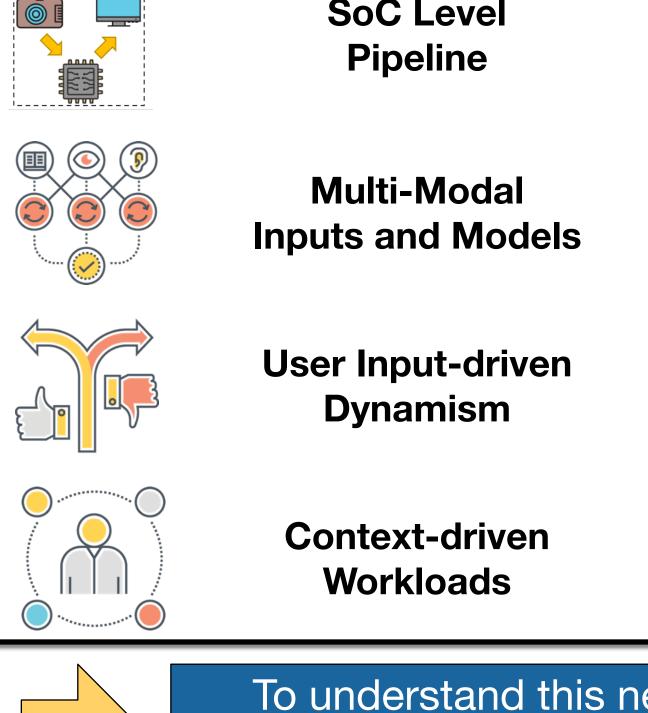
Model Execution Concurrency

ſ		No concurrent execution	Concurrent Execution
	ency	Example: MLPerf Infernce	Example: Multi-tenant DNN @ Data Centers
	Ide		
	eper	MLPerf	Chatbot
	Õ	MLPert	Video Analysis
	No		

_	Cha	aracteristic	Example Implications to ML System Design				
	\rightarrow	Concurrent and Cascaded Models	Concurrency and dependency-aware scheduling				
		Realtime Processing	Deadline-oriented optimizations (Just minimizing latency beyond the deadline does not contribute to better user experiences)				
	SoC	SoC Level					





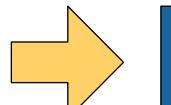


Input sensor- and output device-aware scheduling

Model heterogeneity-aware hardware design

Runtime software to support for user input-driven dynamic workloads

Highly diverse workload depending on



To understand this new class of ML workloads, real-time MTMM, we need a well-defined workload suites based on realistic use cases!

XRBench v0.1

Unit Models

Category	Task	Model	Dataset	Model Perf. Requirement
	Hand Tracking (HT)	Hand Shape/Pose (Ge et al., 2019)	Stereo Hand Pose (Zhang et al., 2017)	AUC PCK, GT 0.948
	Eye Segmentation (ES)	RITNet (Chaudhary et al., 2019)	OpenEDS 2019 (Garbin et al., 2019)	mIoU, GT 90.54
Interaction	Gaze Estimation (GE)	Eyecod (You et al., 2022)	OpenEDS 2020 (Palmero et al., 2021)	Angular Error, LT 3.39
	Keyword Detection (KD)	Key-Res-15 (Tang & Lin, 2018)	Google Speech Cmd (Google, 2017)	Accuracy, GT 85.60
	Speech Recognition (SR)	Emformer (Shi et al., 2021)	LibriSpeech (Panayotov et al., 2015)	WER (others), LT 8.79
	Semantic Segmentation (SS)	HRViT (Gu et al., 2022)	Cityscape (Cordts et al., 2016)	mIoU, GT 77.54
Context	Object Detection (OD)	D2Go (Meta, 2022b)	COCO (Lin et al., 2014)	boxAP, GT 21.84
Understanding	Action Segmentation (AS)	TCN (Lea et al., 2017)	GTEA (Fathi et al., 2011)	Accuracy, GT 60.8
	Keyword Detection (KD)	Key-Res-15 (Tang & Lin, 2018)	Google Speech Cmd (Google, 2017)	Accuracy, GT 85.60
	Speech Recognition (SR)	Emformer (Shi et al., 2021)	LibriSpeech (Panayotov et al., 2015)	WER (others), LT 8.79
	Depth Estimation (DE)	MiDaS (Ranftl et al., 2020)	KITTI (Geiger et al., 2012)	$\delta > 1.25$,LT 22.9
World Locking	Depth Refinement (DR)	Sparse-to-Dense (Ma & Karaman, 2018)	KITTI (Geiger et al., 2012)	δ_1 , GT 85.5(100 samples)
	Plane Detection (PD)	PlaneRCNN (Liu et al., 2019)	KITTI (Geiger et al., 2012)	$AP^{0.6m}$, GT 0.37

Score Metric

Four Unit Scores

Unit Score	What does it measure?	Example Deadline k=0 k=1 k=15 k=50 (default)
Real-time	Degree of deadline violations (Not absolute latency!)	1.0 0.8 0.6 0.4 0.4 0.2 0.2
Energy	Energy consumption	0.0 0.0 0.5 1.0 1.5 2.0 Latency (s)

Selection Criteria

Usage Scenarios

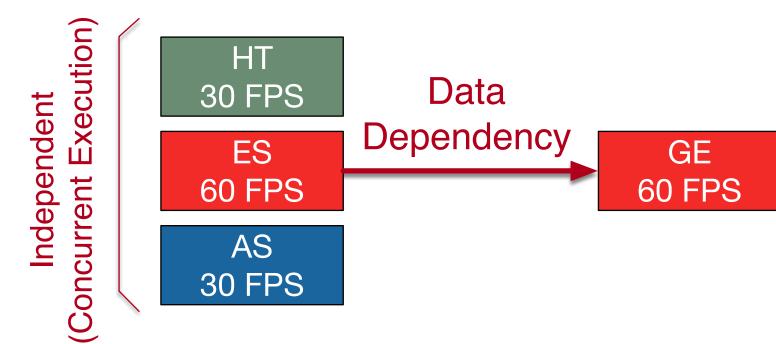
- Recommendation from industry ML researchers and engineers

- Model performance (e.g., accuracy) and efficiency

Envisioning **On-device** AI

Usage Scenario	HT		ye Pipeline		peech Pipeline	SS	OS	AS	DE	DR	PD	Example Usage Scenario Description
		ES –	→ GE (dep: D)	KD	$0 \rightarrow \mathbf{SR} \ (\mathbf{dep:} \ \mathbf{C})$							I I I I I I I I I I I I I I I I I I I
Social Interaction A	30	60	60							30		AR messaging with AR object rendering
Social Interaction B		60	60					30				In-person interaction with AR glasses
Outdoor Activity A				3	3	10	30					Hiking with smart photo capture
Outdoor Activity B				3	3		30					Rest during hike
AR Assistant				3	3	10	10		30		30	Urban walk with informative AR objects
AR Gaming	45								30		30	Gaming with AR object
VR Gaming	45	60	60									Highly-interactive Immersive VR gaming

Example Usage Scenario Diagram (Social Interaction B)



- ML pipeline: Cascade multiple models to implement complicated functionalities (e.g., ES -> GE in this example; eye pipeline)
- High FPS eye pipeline: Enables low latency human-device interaction
- Dependency in eye pipeline: ES results are used as inputs of GE

	Relative model performance compared to reported numbers in original papers	→ mIoU, accuracy, mAP, etc.
Quality of (QoE)	Frame drop rate	

All formulated to be higher-is-better metric within [0,1] range

Benchmark Score

Unit score 📃 Per-inference Score 📕 Per-model Score 📃 Usage scenario Score 📃 Benchmark Score Per Inference Score For a frame f of a model m in a usage scenario S Per Inference Score (m, f) = Real-time Score (m, f) X Energy Score (m, f) X Accuracy Score (m, f) Range: [0,1] Meaning: A comprehensive score for each inference run that considers real-time, energy, and accuracy requirement Per Model Score For frames **f**(0), **f**(1), ... **f**(N-1) for a model **m** in a usage scenario **S**, where N = NumFrames(**m,S**) Range: [0,1] er Model Score (**m.S**) Per Inference Score(*m.f*(i)) cross frames f(0), f(1), ... f(K-1) Note: If all the frames are dropped, the score is defined to be zero For models m(0), m(1), ... m(K-1) in a usage scenario S, where K = NumModels(S Range: [0,1] Per Usage Scenari Score (**S**) Average(Per Model Score(m(i), S) X QoE Score(m(i), Note: The frame drop rates only can be defined in the usage scenario granularity; QoE score is based on frame drop rates, so the QoE Score is used here Benchmark Score For usage scenarios S(0), S(1), ... S(|B|-1) where |B| = number of usage scenarios in XR Bench, B Range: [0,1] Range: [0,1] Per Usage Scenario Score (**S**) Benchmark Score cross usage scenarios S(0), S(1), .

Hierarchical Formulation

- Define scores from fine-grained to coarse-grained execution units (each inference -> all the inference runs for a model -> usage scenario -> benchmark)

Composable Formulation

- Range of unit scores: [0,1]
- Product of unit scores => benchmark score

Single-metric: Provides comprehensive insights and facilitates industry score submissions

(Break-down scores are still available from the benchmark)

https://xrbench.ai

Full detailed formulation is available in the paper!

* HT: hand tracking, ES: eye segmentation AS: action segmentation

lase Studies and Conclusion

Evaluation: Various ML Accelerator Systems

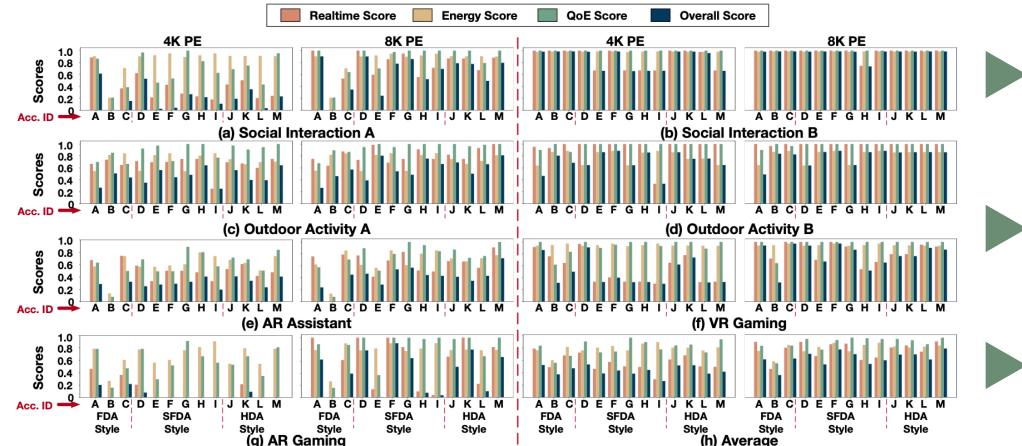
Acc. ID	Acc. Style	Dataflow
А	FDA	WS
В		OS
С		RS
D	SFDA ¹	WS + WS (1:1 partitioning)
Е		OS + OS (1:1 partitioning)
F		RS + RS (1:1 partitioning)
G		WS + WS + WS + WS (1:1:1:1 partitioning)
Н		OS + OS + OS + OS (1:1:1:1 partitioning)
Ι		RS + RS + RS + RS (1:1:1:1 partitioning)
J	HDA	WS + OS (1:1 partitioning)
K		WS + OS (3:1 partitioning)
L		WS + OS (1:3 partitioning)
М		WS + OS + WS + OS (1:1:1:1 partitioning)

- **Accelerator Styles**
 - FDA: Fixed dataflow accelerator
 - SFDA: Scaled-out FDA
 - HDA: Heterogeneous dataflow accelerator

Accelerator Dataflow

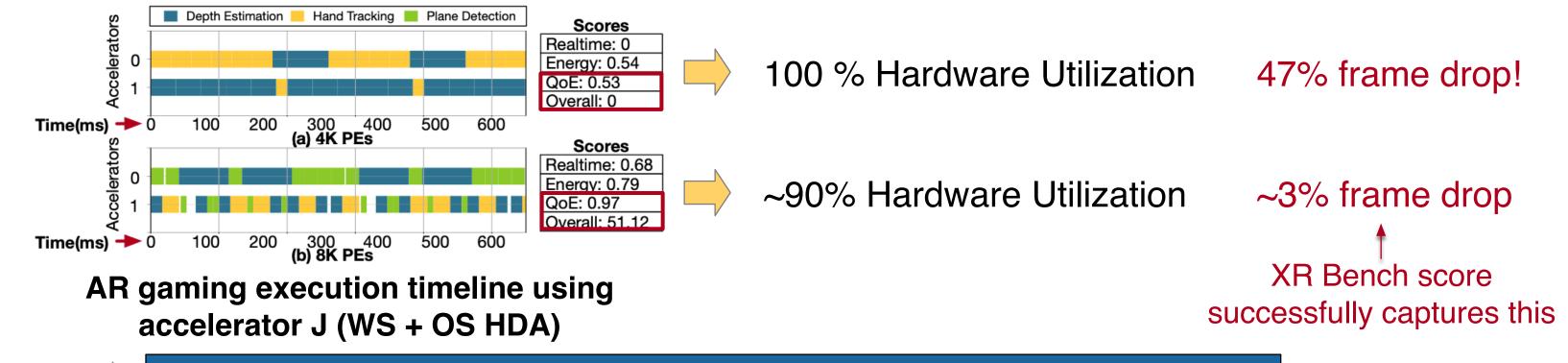
- WS: Weight-stationary - OS: Output-stationary

Main Evaluation Results and Insights



- ML Systems for XR needs to be co-designed with usage scenarios
- **Optimal accelerator style** depends on the chip scale
- **Multi-accelerator systems are** friendly to XR systems

More insights: Example implication to ML system design for XR



Hardware utilization is an incorrect metric for XR ML system design!

Conclusion

- **Real-time MTMM workloads have unique characteristics and new implications to** ML system design
- We developed XRBench to invite everyone for this new problem domain: ML system for real-time MTMM workloads XRBench |
- XRBench is an open project